CHEMICAL STABILITY OF PYROPHOSPHATE-TRILONATE ELECTROLYTE
نویسندگان
چکیده
منابع مشابه
High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte
Expanding the range of supercapacitor operation to temperatures above 100 °C is important because this would enable capacitors to operate under the severe conditions required for next-generation energy storage devices. In this study, we address this challenge by the fabrication of a solid-state supercapacitor with a proton-conducting Sn(0.95)Al(0.05)H(0.05)P(2)O(7) (SAPO)-polytetrafluoroethylen...
متن کاملUV-Vis spectroscopic study of the stability of Silver nanoparticles in monovalent and divalent electrolyte solutions
Nanotechnology has been advanced since the last decades. Among all nanomaterials that have been developed, nanosilver is the most frequently used nanoparticles. Its release into natural water bodies is inevitable due to its broad applications. Nanosilver (nAg) was prepared via Tollens method using. The morphology, size distribution and average size of the obtained nAg was characterized using Tr...
متن کاملUV-Vis spectroscopic study of the stability of Silver nanoparticles in monovalent and divalent electrolyte solutions
Nanotechnology has been advanced since the last decades. Among all nanomaterials that have been developed, nanosilver is the most frequently used nanoparticles. Its release into natural water bodies is inevitable due to its broad applications. Nanosilver (nAg) was prepared via Tollens method using. The morphology, size distribution and average size of the obtained nAg was characterized using Tr...
متن کاملStability and Rheological Behavior of Sulfonated Polyacrylamide/ Laponite Nanoparticles Dispersions in Electrolyte Media
Due to the importance of nanoparticles stability in industrial applications, in this research, stability of laponite nanoparticles dispersions containing different concentrations of sodium sulfonated polyacrylamide (SPA) was investigated in electrolyte media for oil reservoirs applications. In this regard, effect of parameters such as polymer concentration, temperature, and ionic strength were ...
متن کاملFirst principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences
سال: 2020
ISSN: 2663-5941
DOI: 10.32838/tnu-2663-5941/2020.3-2/01